

Profiling CsI detectors

Emily Hudson
Kaitlin Salyer
Dr. Grigory Rogachev
Swarthmore College
Cyclotron Institute, Texas A&M

Goal

- Investigate the properties of two cesium iodide (CsI) detectors
- Measure the detector's resolution and whether it depends on the location on the detector's surface

Motivation

- These two CsI detectors will be used in the Texas Active Target (TexAT) detector currently being developed
 - Will be used for experiments with rare isotope beams to study structure of exotic nuclei and measure nuclear reactions relevant for nuclear astrophysics
- It is important to know whether these detectors have a good resolution and whether the location on the surface affects the data recorded

TexAT Detector

- An active-target time projection chamber (TPC) currently in development
 - TPC: A gas filled chamber with a uniformly applied electric field that allows 3D track reconstruction
 - Active target: The gas is both the detection medium and the target

FIG. 1. TexAT assembly (one side of array is removed to show details).

From E. Koschivy et al.

TexAT Detector

- Incoming particles will ionize the atoms of the gas and create free electrons
 - Drift towards the readout plane (a MicroMegas board)
 - The detection location of the electrons and drift time allow for track reconstruction

FIG. 1. Example track for the ⁴He(¹⁸Ne,p)²¹Na reaction in the TexAT detector as visualized in Geant4. The light recoil (proton) hits the Si detector on the top plate and the heavy recoil (²¹Na) stops in the gas volume.

From E. Koschivy et al.

About CsI detectors

- CsI is a type of scintillation detector (or scintillator)
- Converts the energy of the incoming charged particles into light
- Silicon PIN diodes convert the light to free electrons
 - A photon knocks out an electron in the p-n junction
- CsI is a slow scintillation detector

The CsI detector

Profiling the CsI detector

 Profiled a cesium iodide detector by placing a mask in front of the detector and measuring the frequency and energies of the alpha particles that pass through each hole

The mask for the CsI detector.

Profiling the CsI detector

- Recorded the means and sigmas of each energy peaks
- Calculated the FWHMs and resolutions for each hole (FWHM= sigma*2.3548, resolution=FWHM/me an)

Setup of the cesium iodide experiment.

Electronics setup

Example data

My CsI Detector

Results

- The lowest peak (Peak 1) frequently didn't show up in the measurements, so the results for it are not shown here.
- Here are the mean and resolution plots for the other three peaks.

Peak means

Peak 2 Resolutions

Kaitlin's CsI Detector

Kaitlin's Results

Kaitlin's Results

Conclusions

- The setup to test resolution and surface nonuniformity worked
- The two detectors behaved similarly
 - Resolution is better in the middle than at the edges, like was expected
- Nonuniformity contributes less than the instrinsic resolution of the detector

Acknowledgements

• I would like to thank the NSF and the Cyclotron Institute for the REU that made this research possible. I would also like to thank the Dr. Rogachev and his group, who I worked with this summer. I would like to particularly thank Dr. Rogachev and Josh Hooker, who gave advice and provided direction for this project.

References

- E. Koschivy, G. V. Rogachev, E. Uberseder, and E. Pollaco. Texas A&M and IRFU, CEA Saclay, Gif-Sur-Ivette, France. *Texas Active Target (TexAT)*Detector- part I: Design and construction progress.
- E. Koschivy, G. V. Rogachev, E. Uberseder, and E. Pollaco. Texas A&M and IRFU, CEA Saclay, Gif-Sur-Ivette, France. *Texas Active Target (TexAT)*Detector- part 2: Monte Carlo Simulations.

Peak 2 Sigmas

Peak 2 FWHM

Kaitlin's Results

